На головну | Пишіть нам | Пошук по сайту тел (063) 620-06-88 (інші) Укр | Рус | Eng   
«Венчурний бізнес — це коли інвестуються 10 компаній, з них половина стає банкрутами, у трьох ви повертаєте свої інвестиції, одна дає 10-кратне зростання й у ще одній компанії прибуток в 100 разів перевищує вкладення» — Тім Дрейпер
  новини  ·  статті  ·  послуги  ·  інформація  ·  питання-відповіді  ·  про Ващука Я.П.  ·  контакти за сайт: 
×
Якщо ви помітили помилку чи похибку, позначте мишкою текст, що включає
помилку (все або частину речення/абзацу), і натисніть Ctrl+Enter, щоб повідомити нам.
×

Винаходи в області нано-композитних матеріалів, переважно створених на базі поєднання з алмаз-пластичного металу багаторівневих сферичних нано-капсул. Зв'язок цих винаходів з технологіями, розробленими в Україні

2011-02-27
Андрій (Гаврієль) ЛІВШИЦЬ
винахідник, інженер-дослідник в компанії «АДЕМ». США, Каліфорнія
Марат ЛІВШИЦЬ
винахідник, головний спеціалист корпорації «САНМІНА». Израиль

С большим интересом ознакомившись со статьёй «Бесценный проект Профессора Каплуна» и, исходя из нашего опыта, зная особенности затронутого в этой публикации технологического направления, мы решили дать информацию о научных и технологических разработках композитов, которые с нетерпением ждут на рынке.

Чтобы связать эти новые разработки с громадным научно-техническим и технологическим опытом, наработанным в научно-исследовательских и опытно-конструкторских предприятиях Украины, мы взяли за основу настоящей публикации, технику создания нано-композитов, основным компонентом которых является нано-порошок синтетического алмаза, технология производства которого родилась в стенах Украинского института сверхтвёрдых материалов.

Существенной новизной добавленной к указанной технологии явилась техника скоростных нано-покрытий на нано-алмазных порошках, которые выполняются из наиболее пластичных металлов, таких как медь, серебро, золото, платина и последующая пластическая калибровка под сверхвысоким давлением, полученных таким образом нано-капсул.

Таким образом в настоящей публикации мы поставили цель показать, что имеющийся уровень научно-исследовательских разработок в области композитного материаловедения, в частности и в Хмельницком Национальном Техническом университете, позволяет при правильной постановке задачи разработчикам и при углублённой кооперации с разработчиками аналогичных технологий из других стран, создать актуальные, востребованные на рынке технологии и материалы и, возможно решить задачи по организации в Хмельницком технологического парка с аналогичной специализацией;.

От момента создания сложных интегрированных, энергетически насыщенных полупроводниковых приборов, в особенности, - полупроводниковых лазеров (лазерных диодов) появилась проблема эффективного теплоотвода, рассеивания тепла, рассеивания токовых импульсов и флуктуаций.

Причиной возникновения этой проблемы, явилось отсутствие среди конструкционных материалов, сплавов и всевозможных сочетаний и комбинаций материалов, возможности надёжно и устойчиво выполнять указанные функции.

Все материалы и их производные в той или другой степени не устраивали разработчиков и эксплуатационников.

В компании INTERNATIONAL ENVIRONMENTAL TECHNOLOGIES, INC разработан концепт и технологический процесс изготовления композитного материала, который в принципе меняет основные свойства известных материалов такого же типа.

Это Композитный материал, имеющий высокие теплопроводные свойства, имеющий при этом высокие электропроводные свойства, способный в течении очень коротких промежутков времени воспринять и рассеять значительные количества энергии; воспринять и передать значительные количества энергии на расстояние и имеющий при этом максимальную механическую прочность, обладающий максимальной надёжностью при сохранении точных геометрических форм под воздействием высоких концентраций температур, энергии и других видов вредных экстремальных воздействий..

Формулировка нового композитного материала, как продукта:

  • композитный материал, имеющий развитую трёхмерную (объёмную) структуру, состоящую из множества одинаковых многоуровневых сферических оболочек, покрывающих сферические ядра; ядра с оболочками (капсулы) скреплены между собой посредством ряда последовательных технологических операций и имеют эквивалентную для всех капсул структуры форму контакта между собой;
  • композитный материал имеет свойства сверх теплопроводности и сверх электропроводности;
  • композитный материал имеет высокую механическую прочность, не склонен к возникновению внутренних механических и температурных напряжений и как следствие этих явлений, - возникновению внутренних деформаций;
  • композитный материал способен подвергаться воздействию высоких давлений и способен под воздействием этих давлений по крайней мере для части компонентов входить в режим хладно-текучести, что позволяет калибровать трёхмерную геометрическую форму структуры и обеспечивать с высокой степенью повторяемости очень точные геометрические размеры структуры;

Варианты коммерческого названия продукта как материала:

  • композитный материал, являющийся одновременно проводником электрического тока и эффективным теплопроводником, имеющий развитую трёхмерную токопроводящую структуру, с равномерно распределёнными в ней узлами (микросферами), точками максимальной теплопроводности, не являющимися проводниками электрического тока;

(то есть выполненными из материала с максимально возможной теплопроводностью, например –алмаза, у которого коэффициент теплопередачи равен 1200, и который не является проводником электрического тока).

Материал имеет вид трёхмерной решётки в узлах которой расположены алмазные сферы, которые являются лучшим из известных теплопроводников, отделённые в трёхмерном пространстве структуры друг от друга,- медными оболочками, являющимися отличным проводником и теплопроводником. Таким образом для электрического тока(наиболее важно для тока в импульсном режиме) композитная структура является неким псевдо-губчатым или псевдо-пористым объёмом, так как по всему указанному объёму токопроводящего материала, равномерно распределены диэлектрические сферические пространства, соизмеримые по размерам с размерами токопроводящего пространства;
Этот факт способствует достаточно быстрому и равномерному рассеиванию тока с одной стороны и быстрому, эффективному. равномерному рассеянию тепла с другой стороны, явлениям имеющим место в одном и том же объёме материала:

  • в качестве материала для оболочек предусмотрены самые пластичные из известных материалов, например – медь или серебро, которые обладают и максимальной из известных материалов электропроводностью; при воздействии высоким давлением в замкнутом объёме, указанные металлы возможно довести до состояния хладно-текучести;
  • При условии приложения высокого давления в трёхмерном замкнутом объёме, характер и форма взаимодействия между капсулами в структуре модифицируются, что позволяет формировать изделия с необходимыми техническими и технологическими кондициями, которые невозможно получить при применении обычных технологий.

Новый материал может получить свои необычные свойства, благодаря соответствующим технологическим приёмам, которые благодаря своей оригинальности, становятся базовыми для оригинального комплексного технологического процесса,- объекта базового изобретения и серии аппликативных изобретений, направленных на развитие и усовершенствование свойств указанных композитных материалов и их производных.

Варианты названия и определения технологии производства композитного материала:

Метод изготовления псевдо- губчатого или псевдо-пористого композитного материала, представляющего собой множество нано-капсул, скреплённых между собой в трехмерную структуру, подвёргнутую на завершающей стадии изготовления,- объёмной пластической калибрующей деформации в режиме хладно-текучести для материала пластичных оболочек нано-капсул.

Технологии производства нано-порошка из алмазов и последующего покрытия его медью или другими пластичными металлами, техника относительно известная с точки зрения принципов технологии, однако на последующих этапах проекта, потребующая относительной модификации.

Таким образом изобретённый материал представляет собой, -

  • токопроводящие и токорассеивающие;
  • теплопроводящие и теплорассеивающие;
  • токопроводящие и теплорассеивающие;
  • теплопроводящие и токорассеивающие,

композитные соединения
на базе компонентов
в виде сферических многослойных капсул
имеющих размерный фактор
в нано-метрическом диапазоне.

Предположительное название одного из вариантов изобретения:

ТРЁХМЕРНАЯ КОМПОЗИТНАЯ ПСЕВДО-ГУБЧАТАЯ СТРУКТУРА.

Международная классификация изобретений: Int.Cl.- B32B 9/00
Национальная классификация США,- 428.408
Предполагаемый прототип,- патент США,- 6,541,115 В2 от 1 апреля 2003 года.

Первичный вариант первого пункта формулы изобретения:

Трёхмерная, композитная, псевдо-губчатая структура, включающая множество, имеющих эквивалентную (тождественную) геометрическую форму, и, состоящих каждый по крайней мере из двух слоёв слоистых компонентов, находящихся в контакте друг с другом, и формирующих при этом законченную трёхмерную геометрическую форму, в которой указанные компоненты равномерно и эквивалентно распределены по объёму и, имеют и формируют равные условия электрического и термического взаимодействия между собой, причём однотипные слои у всех компонентов разделены между собой однотипными же слоями из тех же компонентов.

Трёхмерная структура, отличающаяся тем, что каждый слой у каждого компонента представляет собой закрытую трёхмерную геометрическую фигуру.

Трёхмерная структура, отличающаяся тем, что каждый последующий слой у каждого компонента охватывает всю поверхность предыдущего слоя у каждого компонента..

Цель, поставленная в указанной теме:

  • повышение мощности электронных приборов в которых предполагается использовать предлагаемые материалы;
  • уменьшение габаритов электронных приборов в которых предполагается использовать предлагаемые материалы;
  • повышение уровня надёжности электронных приборов в которых предполагается использовать предлагаемые материалы;
  • удлинение срока жизни электронных приборов в которых предполагается использовать предлагаемые материалы;
  • повышение общей эффективности электронных приборов в которых предполагается использовать предлагаемые материалы.

Предлагаемый композитный материал (структура) способен принципиально изменить условия эксплуатации и рабочие характеристики высокоэнергонасыщенных электронных приборов; позволяет создать новое поколение электронных приборов, в гораздо меньшей
степени зависящих от тепловых характеристик. Это особенно важно для мощной импульсной техники, имеющей мощность на пике импульса больше, чем номинальная мощность прибора.

В качестве примера можно привести одномодовый полупроводниковый лазер с номинальной выходной оптической мощностью в 300 миливатт и длиной волны в 780 нанометров, который будучи подключён к управляющему электронному модулю, работающему в радиочастотном диапазоне(100 мегагерц) на пике импульса длительностью в 10 наносекунд, повторяющемся каждые 10 наносекунд, показал выходную оптическую мощность равную 3,1 ваттт в течении 72 часов. Гетероструктура указанного полупроводникового лазера(лазерного диода) была установлена на подложку из предлагаемого композитного материала,- выполненного в виде псевдо-губчатой структуры.

Дополнительные возможности, которые даёт использование предлагаемого материала:

  • изготовление корпусов приборов из одного и того же материала с гомогенной монотонной структурой;
  • выполнение корпусов и несущих деталей электронных приборов в виде токопроводящей губчатой системы, способной в случае внезапных пиковых пульсаций тока или внезапных пиковых пульсаций температуры в кратчайшее время рассеивать или аккумулировать избыточную часть внезапно возникшей энергетической нагрузки;
  • возможность совмещать токоведущие и тепловедущие функции в одном и том же конструктивном элементе.

Что же в конце концов изобретено во всём комплексе изобретений?
К принципиальным инновационным составляющим предложенного комплекса изобретений, относятся:

  • структура многослойной (многоуровневой) капсулы;
  • геометрическая форма многослойной (многоуровневой) капсулы,- сфера;
  • порядок чередования слоёв (уровней) в сферической капсуле;
  • порядок и геометрия расположения сферических капсул в трёхмерной структуре изделия;
  • технологический принцип изготовления изделия;
  • введение в процесс изготовления – операции калибрования геометрической формы изделия, после первого этапа прессования;
  • выполнение операции калибрования в трёхмерной системе координат;
  • выполнение операции калибрования при состоянии материала наружного слоя (оболочки) капсулы близкого или эквивалентного состоянию хладно-текучести;
  • удаление при калибровании всех незаполненных токопроводящим материалом полостей из трёхмерного пространства изделия;
  • формирование в трёхмерном пространстве изделия псевдо-губчатой структуры, при этом роль разделяющих точек в указанной структуре играют менее пластичные материалы из тех, которые использованы в композите капсулы;
  • использование губчатой структуры изделия для рассеивания тепла и тока по всему объёму;
  • использование псевдо-губчатой структуры изделия для абсорбции (поглощения) излишков энергии, возникающих во время пиковых моментов импульсного режима работы изделия;
  • использование состояния хладно-текучести для снятия внутренних напряжений в материале и размерной калибровки в трёх координатах одновременно;
  • сочетание материалов в иерархии оболочек сферической формы капсулы таким образом, что каждый последующий слой выполнен из менее твёрдого и более пластичного материала;
  • сочетание материалов в иерархии ядра и оболочек сферической формы капсулы таким образом, что ядро выполняется всегда из наиболее твёрдого материала из всех материалов применённых при создании капсулы;
  • применение в качестве основного принципа калибровки,- сохранение без деформаций твёрдого ядра сферы и максимальный уровень пластической деформации пластичных материалов периферийных слоёв сферы капсулы;
  • применение для калибровки высокого удельного давления в замкнутом трёхмерном пространстве;
  • применение принципа равномерного распределения давления по всем координатам (осям) замкнутого трёхмерного пространства;
  • подбор толщин пластически деформируемых слоёв таким образом, что минимальная толщина слоя больше или равна диаметру ядра капсулы.

Предлагаемый композитный материал после завершения всех операций по его изготовлению, приобретает вид законченной геометрической структуры, например,- призмы, которую необходимо рассматривать как токопроводящий объект, в объёме которого равномерно распределены диэлектрические сферы, изготовленные из синтетических алмазов. Сечение такого проводника достаточно велико, и благодаря развитой объёмной структуре, у такого проводника невысокое электрическое сопротивление. Поскольку в объёме токо проводящей структуры имеются вкрапления из алмазных зёрен (сфер), которые не являются проводником тока, ток огибает эти зоны в теле структуры и проходит только в токо проводящий объём. Такая схема рассеивания или распределения тока по относительно большому сечению позволяет резко снизить потери и ускорить прохождение тока. В случае с необходимостью рассеять тепло, псевдо-пористая структура представляет собой узлы специфической решётки в узлах которой расположены алмазные сферы, термическое сопротивление которых в 4-5 раз ниже чем в целом по структуре, поэтому тепло устремляется в узлы указанной решётки и это обеспечивает очень быстрый отток(рассеивание) тепла от источника его возникновения. То есть в обоих случаях создаётся феномен пятнистого трёхмерного распределения зон с различными удельными коэффициентами теплопроводности и электропроводности.
Кроме этого размеры капсул в масштабе нанометров и финишная пластическая деформация в режиме хладно-текучести, позволяют значительно уменьшить зазоры между капсулами, что повышает эффективность отбора и рассеивания тепла и токовых импульсов. Расчётный и ожидаемый эффект при рассеивании тепла в 4-5 раз превышает самые лучшие показатели в существующих технических решениях.

Виду того, что предлагаемое техническое решение затрагивает и может быть применено в целом ряде технологических направлений в самых разных сферах, для защиты указанного технического решения,- так называемой базовой технологии, представляется целесообразным оформить базовый заявочный материал на патент, который необходимо выполнить в как можно более общей форме, применяя общие определения. По мере разработки аппликаций технологии и расширения области её применения, предусмотрен выпуск дополнительных патентных аппликаций (CIP).
Основная цель преследуемая и поставленная в базовом изобретении,- повышение уровня эффективности материала в части теплопроводности и рассеивания тепла; скорости отвода тепла от источников нагрева и надёжности процесса отбора и утилизации тепла в течении длительной работы объекта в котором стабилизируется уровень температурных пульсаций;

  • повышение уровня эффективности материала в части электропроводности и рассеивания тока; исключения потерь тока при прохождении через структуру и надёжности процесса прохождения и рассеивания тока в течении длительного периода работы.

Технические решения, которые применяются для достижения цели:

  • уменьшение диаметра капсул до минимума, позволяемого технологией их производства, (чем меньше, тем эффективнее);
  • калибрация геометрической формы структуры за счёт пластической деформации оболочек капсул в режиме хладно-текучести; это уменьшает объём пустот в промежутках между капсулами, снижает электрическое и термическое сопротивление, улучшает механические характеристики структуры и удаляет внутренние напряжения в трёхмерной иерархии структуры.

Исходя из наличия положительного эффекта от использования композитного материала, можно предположить варианты направлений развития и разработки следующих аппликаций для различных сфер применения.

Ядро капсулы,- керамика; оболочка капсулы,- медь; серебро; алюминий; никель;
- вольфрам; - медь;серебро;никель;алюминий;
- железо; - алюминий;медь;
- бериллий; - алюминий;
- магний; - алюминий;
- кремний; - медь; серебро; золото;
- цирконий; - алюминий;
- алмаз; - медь; серебро; золото;
- ситалл; - медь; серебро; золото;
- твёрдый сплав; - медь; алюминий; кобальт; молибден.

Пример применения композитного материала в составе,-
Бериллий-алюминий;
Магний – алюминий;
Из этих композитов возможно изготовление основ жёстких магнитных дисков для накопителей памяти ЭВМ. Такие диски, благодаря своим техническим характеристикам, имеют возможность работать при частоте вращения до более чем 20000 RPM.
Эти материалы открывают новые возможности и в,-

  • создании гибридных дисков;
  • технологиях покрытий в микроэлектронике;
  • создании активирующих присадок для топлива;
  • для изготовления особо важных деталей.

В качестве примера использования композитного материала, можно рассмотреть упаковку и корпус полупроводникового лазера (лазерного диода). Для примера можно рассмотреть лазерный диод с мультимодовым излучением и выходной оптической мощностью в 1 ватт. Для управления работой диода необходимо для получения выходной мощности в 1 ватт подать как минимум 1 Ампер тока. Напряжение, с учётом внутреннего сопротивления самого лазерного диода и управляющей электронной системы составит как минимум- 2 вольта. Таким образом общая потребляемая мощность составит 2 ватта,при реальной выходной мощности в 1 ватт. Коэффициент потерь мощности,- 50% - это лучший показатель известный на сегодня. То есть наименее нагруженный лазерный диод с мультимодовым излучением (сечение луча составляет,- 300 микрон х 1-3 микрона) нуждается в рассеивании 1 ватта энергии. Стандартный корпус для такого типа диодов имеет обозначение SOT-148 и диаметр его монтажного фланца составляет 9 мм. Для того, чтобы рассеять такое громадное удельное количество тепла и нужен композитный материал, способный от гетероструктуры лазерного диода, размеры которой не превышают размеров стандартного полупроводникового кристалла интегральной схемы отвести тепло, возникающее от преобразования в тепло энергии мощностью в 1 ватт. Номинальная рабочая температура в зоне расположения гетероструктуры не может превышать 25-27 градусов Цельсия (плюс). Для того, что бы осуществить трансфер такого количества тепла, гетероструктуру припаивают к композитному носителю, который рассеивает тепло на корпус диода, который в свою очередь отдаёт возникшее тепло в охлаждающую (термо-электро охладитель) систему. Чем более эффективен материал, тем более эффективна работа лазерного диода., включая стабильность, долговечность и выходную мощность.

Проблема является гораздо более острой при необходимости отвести тепло от одномодового диода, так как у такого типа диодов сечение луча представляет собой окружность диаметром не более 0,6 микрона. В этом случае концентрация энергии ещё более высокая и функция отвода и рассеивания тепла становится ещё более важной.
Учитывая тот факт, что только для нужд всевозможных видео систем, систем оптической памяти, оптических накопителей памяти к персональным компьютерам и тому подобным изделиям необходима система лазерных источников света, в различных областях спектра, количество лазерных диодов, только для этих нужд составляет в год более 100 миллионов штук, при цене лазерного диода мощностью в 1 ватт более $1000. В основной массе сегодня оптическая мощность применяемых лазерных диодов составляет приблизительно 80 милливатт, однако работающих в красном диапазоне спектра и одномодовых, так что применение нового эффективного композита является исключительно актуальным.

По состоянию на сегодняшний день известны следующие композитные материалы, используемые для аналогичных целей:
Медь-вольфрам
Медь-молибден
Алюминий карбид-кремний
Алюминий-кремний
Нитрид алюминия
Синтетический однокристаллический алмаз
Химический алмаз
Алмазно-медный композит. У этого композита обозначение – DMCH,- Diamond- Copper Composite (Diamond Metal Composite for Heat Sink). Его производит компания – SUMITOMO ELECTRIC USA, INC. По информации этой компании термическое сопротивление и термическая проводимость у этого композита всего в три раза лучше чем у ординарных композитов. Совремённые электронно-оптические системы требуют гораздо более высоких показателей, в 4-5 раз лучше, чем у ординарных композитов. Такие результаты может дать предлагаемый нано-композитный материал.

У компании SUMITOMO ELECTRIC на указанный композит имеется патент за номером № 6,270,848 от 7 августа 2001 года. Предлагаемое техническое решение по отношению к этому патенту имеет следующие преимущества:

  • в нашем композите есть только два компонента,- алмазные сферы(зёрна) и медные оболочки к ним;
  • в нашем композите имеется тепло-рассеивающий эффект;
  • в нашем композите имеется токо-рассеивающий эффект;
  • у нашего композита электрическое сопротивление эквивалентно электрическому сопротивлению меди;
  • наш композит формируется и калибруется с использованием эффекта хладно-текучести меди(или любого другого пластичного металла);
  • наш композит имеет высокую механическую прочность, благодаря калибровке методом создания состояния хладно-текучести;
  • наш композит имеет высокий уровень электро-проводимости, благодаря калибровке методом создания состояния хладно-текучести;
  • наш композит имеет более точные размеры, благодаря калибровке методом создания состояния хладно-текучести (cold drawn of metal or cold metalicity liquid state);
  • наш композит имеет более высокий уровень тепло-проводимости, благодаря очень малым размерам капсул (нанометры) и благодаря калибровке методом создания состояния хладно-текучести;

Имеется информация ещё по 3 патентам с той же или эквивалентной тематикой.

Технологические процессы по изготовлению алмазных нано порошков с практически равными размерами гранул являются новыми и не использовались на предприятиях мира, нам представляется, что они могут быть реализованы только в Киевском институте сверхтвёрдых материалов и мы можем предположить возможность создания совместных изобретений.

Технологические процессы по покрытию алмазных нано порошков медью также являются новыми и авторы технологии готовы сотрудничать с потенциальными финансовыми и стратегическими партнёрами по внедрению этой технологии.

Все контакты по этой тематике предполагаются через офис Ярослава Ващука.

джерело: Інтернет-сайт "ВЯПат"
корисний матеріал? Натисніть:

групи: винахідництво; Інноваційна діяльність; світ
теги: винахід; США; інтернет; комп'ютерні технології




2020-11-20
Жива вода
інші статті...
© Ярослав Ващук, 2003-2023
при використанні будь-яких матеріалів сайту посилання на джерело обов'язкове
[pageinfo]
сайты Хмельницкого bigmir)net TOP 100