На главную | Пишите нам | Поиск по сайту тел (063) 620-06-88 (другие) Укр | Рус | Eng   
Прибыли от использования патентов в мире возросли от 3 млрд долл. в 1982 году до 120 млрд долл. в 2003 году
  новости  ·  статьи  ·  услуги  ·  информация  ·  вопросы-ответы  ·  о Ващуке Я.П.  ·  контакты за сайт: 
×
Если вы заметили ошибку или опечатку, выделите мышкой текст, включающий
ошибку (всё или часть предложения/абзаца), и нажмите Ctrl+Enter, чтобы сообщить нам.
×

Современные методы применения систем автоматического проектирования в разработке инновационных технических решений

2012-06-27
Андрей ( Гавриэль ) Лившиц

С усложнением инновационных проектов, всё большее значение получают автоматизированные методы и системы проектирования

Только с их применением открывается возможность при приемлемых затратах и в оптимальное время закончить инновационный проект

При повторном рассмотрении основных определений и значений ТРИЗ и АРИЗ для практического применения в процессах проектирования в рамках инновационного проекта , можно использовать следующие определения :

1. Системный подход является отражением и развитием диалектических принципов «всеобщей взаимосвязи» и «развития» и, по сути дела, есть один из принципов диалектического метода познания. Методология системного подхода предполагает представление любого объекта в виде системы и всестороннее ее рассмотрение.

2. Система – комплекс элементов, закономерно организованных в пространстве и времени, взаимосвязанных между собой и образующих определенное целостное единство. Система характеризуется составом элементов, структурой и выполняет определенную функцию.

3. Элементы – это относительно неделимые части целого; объекты, которые в совокупности образуют систему. Элемент считается неделимым в пределах сохранения определенного данного качества системы.

4. Структура – закономерная устойчивая связь между элементами системы, отражающая форму, способ расположения элементов и характер взаимодействия их сторон и свойств. Структура делает систему некоторым качественно определенным целым, отличным от суммы качеств составляющих ее элементов (т. к. предполагает взаимодействие элементов друг с другом по-разному, только определенными сторонами, свойствами, а не в целом.)

5. Функция – внешнее проявление свойств объекта (элемента) в данной системе отношений; определенный способ взаимодействия объекта с окружающей средой, «способность» объекта. Системы обладают многими функциями.

6. Подсистемы (субсистемы) – части системы, представляющие собой некоторые произвольно или естественно выделенные группы элементов. Выделение подсистем производится по функциональному признаку. Один элемент иногда может совпадать с некоторой подсистемой или входить сразу в несколько разных подсистем. При этом связь между элементами внутри подсистем и внутри системы отличается от характера связи между самими подсистемами. Элементы и подсистемы объединяются понятием компоненты системы.

7. Надсистема (метасистема) – система более высокого порядка по отношению к данной, и в которую данная система вписана и функционирует «на правах» подсистемы.

8. Техническая система (ТС) есть искусственно созданное материальное единство закономерно организованных в пространстве и во времени и находящихся во взаимной связи элементов, имеющее целью своего функционирования удовлетворение некоторой общественной потребности.

Элементы ТС могут быть как искусственными, так и природными. Любая ТС входит в две системы отношений. С одной стороны – это объект материального мира, подчиняющийся законам природы (в первую очередь законам физики как наиболее общим), с другой стороны, ТС выступает как элемент общественных отношений, т. к. техника является лишь средством для осуществления социальных целей.

Если ТС характеризуется пространственным расположением элементов, то ТС – устройство или вещество. Если ТС характеризуется организацией элементов во времени – имеем дело со способом.

Понятие ТС позволяет сформулировать основной признак технического решения (ТР): ТР указывает конкретную ТС, функционирование которой позволяет достичь поставленную цель, т. е. указывает на отношение ТС к некоторой цели.

Инженерное сообщество по достоинству оценило вклад первооткрывателей , создателей первых в мире систем автоматического проектирования

Итак в этом году :

... Киотскую премию, которую иногда называют японским аналогом Нобелевской премии, вручили американцу Айвану Сазерленду - создателю первого прообраза современных систем автоматизированного проектирования (САПР). Об этом сообщается на сайте японской премии.

Премия Киото присуждается фондом Инамори (Inamori Foundation), который в 1985 году учредил Казуо Инамори, основатель компании Kyocera. Денежная часть Киотской премии составляет 50 миллионов йен. Победитель также получает памятную медаль из золота.

Каждый год вручается три премии категориях "технологии" (Advanced technology), "искусство и философия" (Arts and philosophy), "фундаментальные науки" (Basic sciences). При этом каждая категория включает сразу несколько различных наук. Например, в фундаментальные науки входят биология, математика (включая чистую, не прикладную математику), астрономия и астрофизика, науки о Земле, нейробиология.

Сазерленд (он получил премию в номинации "технологии") создал программу, прототип современных САПР, под названием Sketchpad в 1963 году во время работы над своей диссертацией (PhD) в Массачусетском технологическом университете. Она работала на компьютере Lincoln TX-2. Программа обладала зачатками графического интерфейса, понимала работу с разными окнами, умела работать с линиями, создавать объекты и обрабатывать их как одно целое. Такой подход позже лег в основу объектно-ориентированного программирования.

В области фундаментальных наук премию получил японец Есинори Осуми. Награды он удостоился за изучения аутофагии - процесса доставки и разложения некоторых компонент клеток -у дрожжей с точки зрения генетики. Ему удалось прояснить многие молекулярные процессы. В области искусства и философии награды удостоилась индийский философ Гаятри Чакраборти Спивак. Она получила награду за применение деконструкции (особенный набор аналитических и критических методов и практик в философии) в политической и социальной плоскости, среди прочего разобрав интеллектуальный колониализм - одну из главнейших тенденций современного мира.

Сегодня основной программной системой , наиболее приемлемой для инновационного проектирования является система SolidWorks

SolidWorks – система автоматизированного проектирования, инженерного анализа и подготовки производства изделий любой сложности и назначения. Она представляет собой инструментальную среду, предназначенную для автоматизации проектирования сложных изделий в машиностроении и в других областях промышленности.

SolidWorks является системой гибридного (твердотельного и поверхностного) параметрического моделирования, она предназначена для проектирования деталей и сборок в трёхмерном пространстве (3-D проектирования), а также для оформления конструкторской документации.

Система относится к САПР "среднего класса". В отличие от "тяжелых" САПР (Unigraphics NX, Pro/Engineer, CATIA), разработанных для Unix-платформ, SolidWorks изначально создавалась для работы на персональных компьютерах в системе Microsoft Windows.

SolidWorks имеет стандартный графический пользовательский интерфейс Windows, максимально использует все преимущества системы Microsoft Windows, такие как контекстные меню, режим copy-and-paste, режим drag-and-drop, быстрый просмотр, поиск и открытие файлов с помощью проводника, возможность "отката" и др.

Кроме того, SolidWorks эффективно взаимодействует с такими Windows-приложениями, как Excel, Word и др. Очевидными достоинствами системы являются ее полная русификация и поддержка ЕСКД, что выгодно отличает SolidWorks от других зарубежных САПР.

В системе SolidWorks поддерживаются все основные стандарты представления и обмена данными. В состав базового пакета SolidWorks входит более 20 трансляторов для экспорта и импорта.

Система автоматизированного проектирования SolidWorks (SolidWorks Corp., США) создана для использования на персональном компьютере в операционной среде Microsoft Windows.

В SolidWorks используется принцип трехмерного твердотельного и поверхностного параметрического проектирования, что позволяет конструктору создавать объемные детали и компоновать сборки в виде трехмерных электронных моделей, по которым создаются двухмерные чертежи и спецификации в соответствии с требованиями ЕСКД.

Трехмерное моделирование изделий дает массу преимуществ перед традиционным двумерным проектированием, например, исключение ошибок собираемости изделия еще на этапе проектирования, создание по электронной модели детали управляющей программы для обработки на станке с ЧПУ.

С помощью программы SolidWorks можно увидеть будущее изделие со всех сторон в объеме и придать ему реалистичное отображение в соответствии с выбранным материалом для предварительной оценки дизайна.

Трехмерная деталь SolidWorks получается в результате комбинации трехмерных примитивов. Большинство элементов основаны на плоском эскизе, по которому создается базовый трехмерный объект. Последовательное наращивание 3D объектов и позволяет в итоге получить желаемый результат.

Двунаправленные ассоциативные взаимосвязи между деталями, сборками и их чертежами SolidWorks гарантируют соответствие модели и чертежа, так как все изменения сделанные в детали автоматически передаются связанную с ней сборку и чертеж.

Опциональные модули SolidWorks позволяют расширить базовые возможности дополнительными функциями по:

• созданию фотореалистичных изображений (PhotoWorks);

• распознаванию дерева построения и параметризации геометрии импортированной из других CAD систем (FeatureWorks);

• созданию презентационных видеороликов изделий в среде SolidWorks (SolidWorks Animator);

• трехмерной обводке кабелей электрических систем и трубопроводов (SolidWorks Routing);

• созданию автономно просматриваемых чертежей и моделей, для обмена информацией с партнерами не имеющими SolidWorks (eDrawings) и т.д.

• Проектирование сборок в SolidWorks осуществляется по двум основным методам: "снизу вверх" или "сверху вниз", а также их сочетанием. При проектировании "снизу вверх" сначала создаются детали, затем они вставляются в сборку и сопрягаются согласно требованиям проекта. Метод проектирования "сверху вниз" отличается тем, что работа начинается в сборке. Проектирование "сверху вниз" в контексте сборки позволяет создавать ссылки на геометрию исходной модели, таким образом, что если изменяется размер исходной модели, связанная с ней деталь обновляется автоматически.

• Для повышения производительности и удобства работы с большими сборками и их чертежами, содержащими десятки тысяч деталей, в SolidWorks предусмотрен специальный режим, позволяющий сократить время загрузки файла и рационально распределять ресурсы компьютера за счет отображения сокращенной информации о компонентах сборки.

• При наложении соответствующих взаимосвязей между компонентами сборки возможно моделирование кинематики механизма сборки. Для этого к одному из взаимосвязанных компонентов, имеющему соответствующие степени свободы, прикладываются движители способные имитировать поступательное или вращательное движение, привод от пружины или действие сил гравитации.

полезный материал? Нажмите:




2020-11-20
Живая вода
другие статьи...
© Ярослав Ващук, 2003-2023
при использовании любых материалов сайта ссылка на источник обязательна
[pageinfo]
сайты Хмельницкого bigmir)net TOP 100