Андрей ( Гавриэль ) Лившиц
В типичной компании на старте её деятельности ресурсы весьма ограничены Это в равной мере относится как к ресурсам финансовым , так и к ресурсам профессиональным , техническим и организационным Возможно ли в рамках такой типичной начинающей компании научиться изобретать более успешно, направленно, как-то учитывать весьма богатый изобретательский опыт предшественников в аналогичном технологическом поле и в таком же стартовом объёме (и если да, то в чём этот опыт состоит?). Каково действительно соотношение в успешном изобретательстве изобретательской техники (которую можно и должно выявлять и осваивать) и соответствующих природных (то есть врождённых, не поддающихся новообразованию) способностей изобретателя? Советский инженер-патентовед, изобретатель, писатель и учёный Генрих Альтшуллер был убеждён в возможности выявить из опыта предшественников устойчиво повторяющиеся приёмы успешных изобретений и возможности обучить этой технике всех заинтересованных и способных к обучению. С этой целью было проведено исследование более 40 тыс. авт. свидетельств и патентов и на основе выявленных закономерностей развития технических систем и приёмов изобретательства разработана Теория решения изобретательских задач (ТРИЗ ) Когда техническая проблема встаёт перед изобретателем впервые, и особенно это характерно для старта проекта , она обычно сформулирована расплывчато и не содержит в себе указаний на пути решения. Кроме того , как правило начинающая компания не имеет никакого производственного опыта и производственного оборудования , на котором можно произвести хоть какие – то эксперименты В ТРИЗ такая форма проблем и такая форма постановки первичной задачи , называется изобретательской ситуацией. Главный её недостаток в том, что перед инженером оказывается чересчур много путей и методов решения. Перебирать их все трудоёмко и дорого, а выбор путей наудачу приводит к малоэффективному методу проб и ошибок. Поэтому первый шаг на пути к изобретению — переформулировать ситуацию таким образом, чтобы сама формулировка отсекала бесперспективные и неэффективные пути решения. При этом возникает вопрос, какие решения эффективны, а какие — нет? Г. Альтшуллер предположил, что самое эффективное решение проблемы — такое, которое достигается «само по себе», только за счёт уже имеющихся ресурсов. Таким образом он пришёл к формулировке идеального конечного результата (ИКР): «Некий элемент (X-элемент) системы или окружающей среды сам устраняет вредное воздействие, сохраняя способность выполнять полезное воздействие». На практике идеальный конечный результат редко достижим полностью, однако он служит ориентиром для изобретательской мысли. Чем ближе решение к ИКР, тем оно лучше. Получив инструмент отсечения неэффективных решений, можно переформулировать изобретательскую ситуацию в стандартную мини-задачу: «согласно ИКР, всё должно остаться так, как было, но либо должно исчезнуть вредное, ненужное качество, либо появиться новое, полезное качество». Основная идея мини-задачи в том, чтобы избегать существенных (и дорогих) изменений и рассматривать в первую очередь простейшие решения. Формулировка мини-задачи способствует более точному описанию задачи: • Из каких частей состоит система, как они взаимодействуют? • • Какие связи являются вредными, мешающими, какие — нейтральными, и какие — полезными? • • Какие части и связи можно изменять, и какие — нельзя? • • Какие изменения приводят к улучшению системы, и какие — к ухудшению? • Для начала работы над изобретением вроде бы достаточно , а как в условиях старта проекта , который должен стать в результате завершения всех работ , - продуктом Как предвидеть возможность трансформировать лучшие качества будущего изобретения в комплекс потребительских свойств, которые при благоприятном стечении обстоятельств могут обеспечить новому продукту не только технологический , но и коммерческий успех Попробуем последовательно моделировать ситуацию ... После того, как мини-задача сформулирована и система проанализирована, обычно быстро обнаруживается, что попытки изменений с целью улучшения одних параметров системы приводят к ухудшению других параметров. Например, увеличение прочности крыла самолёта может приводить к увеличению его веса, и наоборот — облегчение крыла приводит к снижению его прочности. В системе возникает конфликт, противоречие. Как известно , ТРИЗ выделяет 3 вида противоречий (в порядке возрастания сложности разрешения): • административное противоречие: «надо улучшить систему, но я не знаю как (не умею, не имею права) сделать это». Это противоречие является самым слабым и может быть снято либо изучением дополнительных материалов, либо принятием/снятием административных решений. В современных условиях очень многие противоречия административного плана , - это противоречия рождаемые коммерческими условиями и критериями реализации будущего изобретения , положенного в технологическую основу инновационного продукта • • техническое противоречие: «улучшение одного параметра системы приводит к ухудшению другого параметра». Техническое противоречие — это и есть постановка изобретательской задачи. Переход от административного противоречия к техническому резко понижает размерность задачи, сужает поле поиска решений и позволяет перейти от метода проб и ошибок к алгоритму решения изобретательской задачи, который либо предлагает применить один или несколько стандартных технических приёмов, либо (в случае сложных задач) указывает на одно или несколько физических противоречий. Опять же сегодня в контексте технических противоречий необходимо видеть влияние на них со стороны коммерческих условий реализации инновационного продукта • • физическое противоречие: «для улучшения системы, какая-то её часть должна находиться в разных физических состояниях одновременно, что невозможно». Физическое противоречие является наиболее фундаментальным, потому что изобретатель упирается в ограничения, обусловленные физическими законами природы. Для решения задачи изобретатель должен воспользоваться справочником физических эффектов и таблицей их применения. • Так было раньше , а что изменилось ? Современная техника компьютерного моделирования , появление и широкое использование инженерных и конструкторских программных систем , дали существенную добавку к системе приёмов решения Система приёмов Анализ многих тысяч изобретений позволил выявить, что при всём многообразии технических противоречий большинство из них решается 40 основными приёмами. Работа по составлению списка таких приёмов была начата Г. С. Альтшуллером ещё на ранних этапах становления теории решения изобретательских задач. Для их выявления понадобился анализ более 40 тысяч авторских свидетельств и патентов Приёмы эти и сейчас представляют для изобретателей большую эвристическую ценность. Их знание во многом позволяет облегчить поиск ответа , но для решения задач на коммерческом уровне этого уже не достаточно. Конечно ясно и понятно , что эти приёмы показывают лишь направление и область, где могут быть сильные решения. Конкретный же вариант решения они не выдают. Эта работа остаётся за человеком. Система приёмов, используемая в ТРИЗ, включает простые и парные (прием-антиприем). Простые приёмы позволяют разрешать технические противоречия. Среди простых приёмов наиболее популярны 40 основных приёмов. Парные приёмы состоят из приёма и антиприёма, с их помощью можно разрешать физические противоречия, так как при этом рассматривают два противоположных действия, состояния, свойства. Стандарты на решение изобретательских задач Стандарты на решение изобретательских задач представляют собой комплекс приёмов, использующих физические или другие эффекты для устранения противоречий. Это своего рода формулы, по которым решаются задачи. Для описания структуры этих приёмов Альтшуллером был создан вещественно-полевой (вепольный) анализ. Система стандартов состоит из классов, подклассов и конкретных стандартов. Эта система включает 76 стандартов. С помощью этой системы можно не только решать, но выявлять новые задачи и прогнозировать развитие технических систем. Технологические эффекты Технологический эффект — это преобразование одних технологических воздействий в другие. Могут требовать привлечения других эффектов — физических, химических и т. п. Физические эффекты Известно около пяти тысяч физических эффектов и явлений. В разных областях техники могут применяться различные группы физических эффектов, но есть и общеупотребительные. Их примерно 300—500. Химические эффекты Химические эффекты — это подкласс физических эффектов, при котором изменяется только молекулярная структура веществ, а набор полей ограничен в основном полями концентрации, скорости и тепла. Ограничившись лишь химическими эффектами, зачастую можно ускорить поиск приемлемого решения. Биологические эффекты Биологические эффекты — это эффекты, производимые биологическими объектами (животными, растениями, микробами и т. п.). Применение биологических эффектов в технике позволяет не только расширить возможности технических систем, но и получать результаты, не нанося вреда природе. С помощью биологических эффектов можно выполнять различные операции: обнаружение, преобразование, генерирование, поглощение вещества и поля и другие операции. Математические эффекты Среди математических эффектов наиболее разработанными являются геометрические. Геометрические эффекты - это использование геометрических форм для различных технологических преобразований. Широко известно применение треугольника, например, использование клина или скользящих друг по другу двух треугольников. Ресурсы Вещественно-полевые ресурсы (ВПР) — это ресурсы, которые можно использовать при решении задач или развитии системы. Использование ресурсов увеличивает идеальность системы. Законы развития технических систем Изучая изменения (эволюцию) технических систем во времени, Альтшуллер выявил Законы развития технических систем, знание которых помогает инженерам предсказывать пути возможных дальнейших улучшений продуктов. Впервые сформулированные Г. С. Альтшуллером в книге «Творчество как точная наука» (М.: «Советское радио», 1979,), законы были сгруппированы в три условные блока: • Статика — законы 1-3, определяющие условия возникновения и формирования ТС; • • Кинематика — законы 4-6, 9 определяют закономерности развития вне зависимости от воздействия физических факторов. Важны для периода начала роста и расцвета развития ТС; • • Динамика — законы 7-8 определяют закономерности развития ТС от воздействия конкретных физических факторов. Важны для завершающего этапа развития и перехода к новой системе. • Самый важный закон рассматривает «идеальность» (одно из базовых понятий в ТРИЗ) системы. Вещественно-полевой (вепольный) анализ Веполь (вещество + поле) — модель взаимодействия в минимальной системе, в которой используется характерная символика. Г. С. Альтшуллер разработал методы для анализа ресурсов. Несколько из открытых им принципов рассматривают различные вещества и поля для разрешения противоречий и увеличения идеальности технических систем. Например, система «телетекст» использует телевизионный сигнал для передачи данных, заполняя небольшие промежутки времени между телевизионными кадрами в сигнале. Ещё одна техника, которая широко используется изобретателями, заключается в анализе веществ, полей и других ресурсов, которые не используются, и которые находятся в системе или рядом с ней. АРИЗ — алгоритм решения изобретательских задач Алгоритм решения изобретательских задач (АРИЗ) — пошаговая программа (последовательность действий) по выявлению и разрешению противоречий, то есть решению изобретательских задач (около 85 шагов). АРИЗ включает , собственно программу, • информационное обеспечение, питающееся из информационного фонда • • методы управления психологическими факторами, которые входят составной частью в методы развития творческого воображения (РТВ). • Существуют и иные подходы, помогающие изобретателю раскрыть свой творческий потенциал. Большая часть этих методов являются эвристическими. Все они были основаны на психологии и логике, и ни один из них не претендует на роль научной теории (в отличие от ТРИЗ). 1. Метод проб и ошибок 2. 3. Мозговой штурм 4. 5. Метод синектики 6. 7. Морфологический анализ 8. 9. Метод фокальных объектов 10. 11. Метод контрольных вопросов 12. Критика ТРИЗ После смерти Алтшуллера, ТРИЗ испытала застой в развитии. В нём, а также в сложности практического применения теории, по мнению критиков виновны следующие проблемы: Не существует методологи решения задач, не смотря на попытки сформировать её исходя из некоторых закономерностей развития техники. • Искажение диалектического подхода из-за введения некоторых новых понятий. • • Появление новых модификаций АРИЗ усложняло алгоритм вместо устранения допущенных неточностей. • • Не было найдено пригодных для реальных задач механизмов переходов от сформулированного противоречия к его разрешению. • • Множество инструментов ТРИЗ представляли собой перебор вариантов не смотря на декларацию отказа от них. • • Использование в вепольном анализе физических полей, существование которых не доказано. • • Невозможность внедрения ТРИЗ в производство по причине сильной зависимости от личного выбора человека. • Современная ТРИЗ Современная ТРИЗ включает в себя несколько школ, развивающих классическую ТРИЗ и добавляющих новые разделы, отсутствующие в классике. Глубоко проработанное техническое ядро ТРИЗ (приёмы, АРИЗ, вепольный анализ) остаётся практически неизменным, и деятельность современных школ направлена в основном на переосмысление, реструктурирование и продвижение ТРИЗ, то есть имеет больше философский и рекламный, чем технический, характер. В связи с этим современные школы ТРИЗ нередко упрекаются (как со стороны, так и взаимно) в бесплодии и пустословии. ТРИЗ активно применяется в области рекламы, бизнеса, искусства, раннего развития детей и так далее, хотя изначально был рассчитан на техническое творчество. Классическая ТРИЗ является общетехнической версией. Для практического использования в технике необходимо иметь множество специализированных версий ТРИЗ, отличающихся между собой номенклатурой и содержанием информационных фондов. Некоторые крупные корпорации применяют элементы ТРИЗ, адаптированные к своим областям деятельности. Я считаю , что и для применения в условиях старт-апов необходимо создать специальную версию ТРИЗ , адаптированную к процессу активной коммерциализации В настоящее время отсутствуют специализированные версии ТРИЗ для стимуляции открытий в области наук (физики, химии, биологии и так далее). Главное препятствие в развитии ТРИЗ — отсутствие методологии анализа исходной проблемной ситуации, диагностирования и прогнозирования проблем как источника постановки целей усовершенствований социотехнических систем. На преодоление данного недостатка направлена разработка современной методологии футуродизайна — «проектирования решений, адекватных Будущему». Одной из тенденций технического прогресса является обострение борьбы за авторские права разработчиков продукции. Поэтому растёт спрос на инновационную деятельность персонала и, соответственно, на методическое и программное обеспечение этих работ. Под этим углом зрения нужно расширять базу данных с полным спектром теоретических подходов. Между тем, наследники Альтшуллера отторгают любые отклонения от позиции в первоисточнике. Они естественно в праве настаивать на своей трактовке имени «ТРИЗ» и при том действовать и аппелировать в гуманитарные среды и аспекты , к педагогике с искусством и вплоть до мемуаров. Альтернативой является лояльность к новым подходам, рождённым новыми , возникшими в последнее время условиями и реалиями , поддерживающим на плаву ТРИЗ в качестве бренда теоретических разработок. Новые аспекты моделирования инновационного процесса могут, во избежание избыточных споров, обрести новое имя, тем более, что ТРИЗ состоит из слов, известных до рождения Г. С. Альтшуллера.
источник:
Интернет-сайт "ВЯПат"
полезный материал? Нажмите:
|